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When similarity solutions are used to describe convective plumes or thermals, 
there is always found to be a discrepancy between the work done by buoyancy 
forces and the kinetic energy of mean motion. It is the main purpose of this paper 
to set down the ratio of these quantities for a wide variety of forms of buoyant 
elements and environmental stabilities. For consistency, the remaining fraction 
of the energy must appear as turbulent kinetic energy and eventually be dissi- 
pated, but these processes are not investigated in detail. The results are shown to 
have some relevance to the problem of convectively driven mixing across a 
density interface, where the largest scales of motion are dominant, and to the 
understanding of the transition zone between two self-preserving states of 
turbulent convection. 

~~~~~ 

1. Introduction 
Theories which predict the rate of mixing across stable density interfaces 

bounding convective layers require a knowledge of the kinetic energy possessed 
by the convective elements when they reach the interface. The energy input to the 
convection can be found from the buoyancy flux, but we also need to know the 
fraction of this energy which is dissipated by turbulence within the layer. Ball 
(1960) suggested that the dissipation will be negligible, and based a model of the 
mixing at an atmospheric inversion on this assumption, and Kraus & Turner 
(1967) used a related argument to discuss the seasonal behaviour of the oceanic 
thermocline. 

The assumption of negligible dissipation can only be justified if the convective 
motions are of a scale comparable with the depth of the whole layer, but in a 
discussion of Ball’s paper Scorer ( 1962) raised another possibility. If the dominant 
motion takes the form of ‘thermals’ rather than large cells, then the measure- 
ments of Woodward (1959) show that only about one third of the work done by 
buoyancy is present as kinetic energy of mean motion. Earlier measurements of 
Rouse, Yih & Humphreys (1952) show that there is a similar energy loss (to the 
turbulent components) in maintained buoyant plumes. 

It is not necessary to rely only on the experiments quoted to find the ratio of 
kinetic energy of mean motion to the work done by buoyancy. It is shown below 
that this ratio can be calculated once the rate of variation of mean properties 
with height and the profile shapes have been specified, and results are obtained 
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for similarity solutions corresponding to a buoyancy flux which varies as some 
power of the height. It turns out that the energy ratio is independent of the 
spreading angle and only moderately sensitive to the radial structure, but does 
depend more strongly on the assumed power laws, i.e. on the stability of the 
environment. The method used is related to the calculations of Priestley (1959, 
p. 88), though he concentrated on the heat flux produced by different types of 
convective element. The results for a uniform environment are also implied by 
Morton’s (1971) discussion of the conservation equations for plumes. 

2. Steady plumes 
We consider first the case of steady turbulent plumes rising in a calm atmos- 

phere from point or line sources. We shall assume that the velocity and density 
distributions are similar at all heights and that the scale widths for velocity and 
buoyancy are identical. (The latter condition can easily be relaxed.) A class of 
similarity solutions may be defined, these being characterized by a linear increase 
of radius with height z and a vertical velocity proportional to an arbitrary power 
of z, which is measured from the source level (Batchelor 1954). The compatible 
variation of the density difference between the plume and its environment can be 
calculated; this may be thought of as being caused by an environmental density 
variation, or by a height-dependent internal mechanism such as condensation 
(Turner 1969). 

It is convenient here to derive the desired relations between the mean energy 
flux and work done by buoyancy from first principles, rather than relating them 
by a hypothetical power-law density distribution in the environment. Suppose 
that the plume is axisymmetric and let the vertical velocity and density fields be 
described by 

s(Po-P) /P1= A = AzPf(r), (1) 

w = Bz*f(r) 9 (2) 

where po is the environmental density, p is that inside the plume and p1 is a 
reference density. Here 7 = (r/z)2 and f(7) is a radially symmetric function which 
will be left arbitrary; a linear spread is implied in writing down these forms, but 
the angle of spread does not enter explicitly. 

The flux E of mean kinetic energy across a horizontal plane at height z and the 
rate W of working of the buoyancy forces are then given by 

E- = 7rp w3r dr 
S O W  

and 
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Form of profile Vdue of q 
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Gaussian -a 
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Interpretation of special cam 
Neutral environment 
Constant velocity 
Free convection 
Constant density difference 
Saturated environment 
Neutral environment 
Constant velocity 
Free convection 
Constant density difference 
Saturated environment 

Energy ratio 
0-500 
0.667 
0.750 
0.778 
0.834 
0.375 
0.500 
0.562 
0-583 
0-625 

Measured, Rouse et al. Neutral environment 0 5 7  

TABLE 1. The fraction of the work done by buoyancy forces which is accounted for in the 
kinetic energy of mean motion according to (8). Results are given for axisymmetric plumes 
with various profiles and power-law variations of velocity with height, w a zq. 

Relations between A and B, and p and q can be obtained using the momentum 
equation integrated across the plume, i.e. 

or ( 5 )  

Thus p = 2q-  1 

and 

We can now form the ratio of the divergence dEldz of the mean flow energy flux to 
the rate of working of the buoyancy forces: the fraction of the work done which is 
accounted for in this way is 

(8) 
dEldz 3q+2 -- -- w 4 ( q + 1 ) 4 ,  

where (9) 

The energy ratio depends both on the exponent q (which is determined by tlie 
stability of the environment, or the nature of the buoyancy-producing internal 
mechanism) and on I1, a profile constant. 

The ratios corresponding to special values of q and Il are summarized in table 1. 
Two widely used theoretical profiles have been compared, the ‘top hat’ with 
1; = 1, and the Gaussian form, for which 1; = $. Some of the values chosen for 
q require explanation. The appropriate value in neutral surroundings is q = - 4, 
since this and the correspondingp = -;lead to a constant flux of buoyancy with 

height in the plume Awrdr is independent of height . Constancy of other 
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Value of q Interpretation of special case Energy ratio 
Neutral environment 0,578 
Free convection 0.695 
Constant density difference 0.723 
Saturated environment 0.771 
Neutral environment 0.500 
Free convection 0.600 
Constant density difference 0.625 
Saturated environment 0.667 
Neutral environment 0.53 

TABLE 2. The fraction of L - 2  work ..me by buoyancy forces which is accounted for in the 
kinetic energy of mean motion according to (10). Line plumes; various profiles and power- 
law variations of velocity with height, w cc 29. 

parameters can also be achieved by appropriate choice of q. The ‘free convection’ 
regime is taken, following Priestley (1959)’ to be that corresponding to Aw being 
independent of height, and q = 1 corresponds to the case of a rising plume of moist 
air in a saturated environment (Ludlam 1958). 

Also shown in table 1 is the ratio derived from their measurements by Rouse 
et al. (1952). Their calculations properly took into account the differences in the 
width of the velocity and temperature profiles, but used Gaussian profiles fitted 
to the data. Since this value results from a single set of laboratory experiments it 
is subject to  experimental error, unlike the other values in the table which are 
direct deductions from the assumptions. 

Entirely analogous results can be obtained for line plumes by integrating over a 
section normal to the plume axis; only the results will be given here. With, again, 
w cc zp, (8) is replaced by 

(10) 
dE/dx 3q + 1 -- - w 2(2g+1)12’ 

(11) where I, = /:Jqm --m f”d6 
[Iw -m fWI2 ’ 

withf = f(S), g = x/x (z being the horizontal distance from the plume axis). The 
profile factor I, is unity for the ‘top hat ’ profiles and 2 / 4 3  for the Gaussian form. 
The ratios resulting from particular choices of q are shown in table 2. The values 
of q corresponding to a given physical situation can of course be different from 
those for axially symmetric plumes. For the line plume, a neutral environment 
and both a constant velocity and constant heat flux are implied by q = 0. 

3. Suddenly released point sources 
3.1. Distributed vorticity 

A parallel argument to the above can be used to discuss turbulent ‘thermals’ 
which are assumed to retain similar velocity and density distributions as they 
rise and mix with their environment. Dimensional arguments again show that 
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Type of element VaIue of q 
Hills spherical vortex -1  

* + 
0 

1 
Similarity solution, Rla = 5 
small core RIa = 20 

Constant core 
volume 

Interpretation of special case 
Neutrd environment 
Constant velocity 
Free convection 
Constant density difference 
Saturated environment 
Neutral environment 
Neutral environment 
Neutral environment 

Energy ratio 

0-357 
0.714 
0.786 
0.81 7 
0.893 
0-564 
0.689 
1 s o 0  

( W W l ~  

TABLE 3. The fraction of the work done by buoyancy forces which is accounted for in the 
kinetic 0nergy of mean motion for suddenly relemed buoyant elements of various kinds. 

the radius will increase linearly with height for the class of buoyant elements 
whose mean density.and velocity are described by 

A = C Z ~ ,  Z = DzQ. (12) 

The magnitudes of C and D will depend on the specific profiles assumed. 
It has been shown by Levine (1959) and Turner (1964) that the velocity dis- 

tribution known as Hill's spherical vortex gives a fairly good instantaneous 
representation of laboratory thermals, so results will h s t  be developed for this 
case. In  Hill's vortex, all the vorticity is contained in a sphere of radius r ,  with 
potential flow outside it. 

The impulse P,and total kinetic energy T are given in terms of r by 

P = 2 m p ~ 3 ~ ,  T = ynp339. (13) 

Using the fact that r cc z and substituting for G from (12) gives 

(14) 
aT 
az 
- = y n P m 3 ( 2 q +  3)22~-1. 

This is to be compared with the total buoyancy force P, which from the momen- 
tum equation is just aP/at. Thus 

aP aP - p = - = -  
at az e W  

or $7rpr3A = 2npD2r3(q+ 3)xW-l. ( 15) 

C = Q(q + 3)D'. 

Comparing with'( 12) ,  we obtain p = 2q - I as before and also it relation between 
C, D and q:  

(16) 

Without knowing anything about the density distribution (and indeed without 
using (16)) the right-hand side of (15) can be compared with (14) to  give 

(17) 
aT/aZ lOq+# -=-- 

F 7 q + 3 '  



222 J .  8. Turner 

Again the angle of spread does not enter into the final result. The values of this 
ratio appropriate to different environments are shown in table 3. The require- 
ment in neutral surroundings is now that P must remain constant, which using 
(15) (and remembering that r cc z )  leads to q = - 1. 

For Hill's spherical vortex the kinetic energy of mean motion may be split up 
still further. The factor in (13) and (17) can be regarded as made up of three 
parts: 3 is due to the kinetic energy of external fluid flowing round the spherical 
region, to the sphere moving as a solid body and the balance of $ is due to the 
kinetic energy of the internal circulation. Thus, for example, in a neutral environ- 
ment only 8 x 4 = Q of the work done by buoyancy appears as kinetic energy of 
the spherical region moving as a solid. 

3.2. Concentrated vortex cores 

Another possible form of convecting element is one in which the buoyancy and 
vorticity are not distributed throughout the moving volume, but are contained 
in a much sharper (possibly turbulent) toroidal core which carries an enclosed 
region of irrotational fluid with it. When the radius a of the cross-section of the 
core is small compared to that (R) of the toroid, expressions for the impulse, 
velocity and kinetic energy may be written down in terms of the circulation K. 
According to Lamb (1932, p. 241) these are respectively 

(18) 1 P = rpKR2, 

5 = ( K / 4 r R )  (In (SR/a) - $1, 
T = &pK2R{ln (8R/a) - 8. 

In  this section we shall consider only buoyant elements with constant total 
buoyancy in a neutrally stable environment (though the argument leading to 
(17) can readily be generalized). In  this case the circulation K also remains 
constant as R increases linearly with distance z above the (virtual) point source. 
First, let us suppose that the distribution of vorticity remains simiar a t  all 
heights as the ring expands; Turner (1957) reported laboratory experiments of 
this kind in which turbulent cores increased their radius at a rate proportional to 
that of the ring. Even if the core size is too great for (18) to hold exactly, dimen- 
sional arguments show that similar relations must apply, with constants C, and 
C, replacing the terms in curly brackets in the equations for velocity and kinetic 
energy. 

The argument used in deriving (17) may be applied again to give 

aT _ -  c2ap c2P 
a2 c, at c, a 

---=- 

A spherical vortex may be treated as a special case of (19), for which it can be 
shown that C, = +r(g)* and C2 = $n(g)*, so that C2/C1 = & = 0.357 as before. 
For the distributions (IS), C, = In (8Rla) - 4 = C2 + #, and the energy ratios 
calculated for two core sizes (on the assumption that (18) still hold for these 
ratios of R/a)  are shown in table 3. 

The result just obtained shows that an increasing fraction of the work done by 
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buoyancy appears as kinetic energy of mean motion as the vorticity becomes 
more and more concentrated. Unless the core becomes extremely small, however, 
it is impossible to account for uZZ the work done, while still retaining the similarity 
assumption. If this assumption is relaxed, it i s  possible to obtain an energy 
balance in the following way. 

Let us now suppose that the buoyancy and vorticity are contained in a core 
which is spreading out so slowly compared with the rate of change of R that its 
volume can be regarded as substantially constant. (It is not always possible to 
neglect the diffusion, especially of vorticity, in this way but the consequences of 
this extreme assumption are worth pursuing.) Thus u2R = constant, and an 
increase in the radius R is compensated by a decrease in the core cross-section. 
Substituting for a in the expression for kinetic energy (18), and treating R as a 
function of time wherever it occurs, it follows on differentiation that 

Thus the variation of Rla in this particular way allows an exact balance to be 
achieved between the work done by buoyancy and the mean kinetic energy 
produced. 

Several pieces of experimental evidence have suggested that vortex rings 
approximating to this form can exist in practice. In  the experiments of Turner 
(1957), mentioned above, laminar buoyant cores were sometimes produced which 
for a time became thinner as R increased (though they later broke down to the 
turbulent ‘similarity ’ state on which most of the measurements were made). 
A more spectacular example was observed in the atmosphere by E. G. Bowen, and 
described in a previously reported letter to  Sir Geoffrey Taylor (see Turner 1957). 
A vortex ring formed from the smoke of a small explosion on the ground rose to 
a height of about five thousand feet, with the cross-section of the visible core 
decreasing and remaining extremely sharp until the ring broke up. This final 
breakup was attributed by the observers to the occurrence of condensation 
within the core, though it now seems more likely to be a consequence of the 
increasing viscous dissipation near the rapidly rotating core at later times, 
which makes it no longer consistent to retain the profiles appropriate to zero 
energy discrepancy. A detailed discussion of this effect is outside the scope of the 
present paper. 

4. Discussion 
With a range of special results now at hand, we can consider some of the more 

general implications. First, it is clear that the efficiency with which convective 
motions convert potential to kineticenergyon the largest scale does depend on the 
form of the motion, and on the velocity profile. In  neutrally stratified smound- 
ings, between about + and 3 of the energy is accounted for in this way, the 
smallest kaction being obtained for an isolated spherical vortex and the largest 
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for a line plume and Gaussian profiles. In one special case, a non-similar vortex 
with constant core volume, all the energy is accounted for when the motion is 
assumed to be inviscid and non-diffusive; but as indicated above, a vortex of this 
kind in a real fluid will eventually break down and take on a different form for 
which there is again a loss of energy to  turbulence. 

If it is the largest scale motions which are responsible for mixing near an 
interface bounding a convecting region (and this seems likely from direct obser- 
vation), then the rate of mixing will depend on the form of the convection ele- 
ments, not just on the convective heat flux. Line plumes should be most effective, 
and we should refer again to the evidence presented by Priestley (1959) which 
suggests that convection in the lower atmosphere does characteristically take 
the form of plumes aligned downwind. On the basis of the energy ratios calcu- 
lated here, ‘thermals’ should be least effective, particularly when we remember 
that the kinetic energy estimates include the environmental motion as well as the 
forward motion and the internal circulation. The relative importance of the last 
two contributions is not yet clear. 

When the convection takes place under conditions of decreasing stabjli ty 
(i.e. as q increases), a larger fraction of the work done by buoyancy appears as 
mean kinetic energy. The difference between the neutral and most unstable case 
treated (corresponding to a saturated environment in cloudy convection) is most 
dramatic for the spherical vortex, but it is still large for the axially symmetric 
maintained plume. There are several pieces of observational evidence which bear 
on this point and support the general form of the predicted dependence on q. 
The peak vertical velocity varies surprisingly little between small and large 
clouds (Warner 1970), but since mean updraughts are greater in the latter case, 
the relative turbulence level must be lower. Glider pilots also report that the 
cores of vigorous convective clouds are relatively smooth, suggesting that a low 
level of turbulence is associated with the strong accelerations in such clouds. 

This brings us to a central (and unanswered) question underlying this study: 
what exactly has happened to the energy deficit implied by these calculations? 
All we have said so far is that this is not present in mean motion and must there- 
fore have been dissipated viscously or converted into turbulent kinetic energy. 
It will be shown elsewhere that an energy argument can also be used to put an 
upper limit on the scale of a laminar flow in which all the energy can be dissipated 
viscously, but little can be deduced using this method alone about the level of 
turbulence or, equivalently, the rate of dissipation at the smallest scales of 
motion. The results suggest, however, that there will be a different relation be- 
tween the mean flow and turbulent kinetic energies for each similarity condition 
(i.e. each value of q ) .  This difference can be important in the assessment of 
various ‘entrainment ’ models of mixing into the convective elements. The first 
uses of this idea (e.g. Morton, Taylor & Turner 1956; Squires & Turner 1962) were 
based on the assumption of an inflow velocity proportional to the mean upward 
velocity; the ratio between these was taken as fixed and independent of stability. 
Telford (1966) and Morton (1968) have suggested instead that the entrainment 
rate should be based on the level of turbulence or on the Reynolds stress. These 
assumptions will not only change the ‘entrainment constant ’ from one value to 
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another as q is changed, but they will also build a ‘memory’ into the system; 
calculations of the mixing into a flow which is in transition between two similarity 
states can no longer be based only on the local properties but must take account 
of the history. 

The present results clearly cannot provide detailed answers to questions such 
as these, but they may give some guidance as to the likely errors involved in 
applying the simplest entrainment models to arbitrary flows. If the whole 
history of a, convection element can be described by power-law variations within 
a limited range of q, then the unassigned fraction of the energy will change little, 
and the entrainment rate can plausibly be related to the mean flow. When there 
is a large change in the behaviour, however, say a strong acceleration followed by 
deceleration, the energy ratios vary so much that this simple model must be 
abandoned. The assumption that mixing is related to  the mean velocity is 
especially poor when a convection element is coming to rest and reversing its 
motion, since at that time vigorous turbulent mixing can still be going on. The 
energy available to  produce turbulence in this latter case can, incidentally, be 
estimated using energy arguments related to those developed in $92 and 3. These 
will not be reproduced here, since the assumption that similarity of profiles is 
maintained during the deceleration is more difficult to justify. 

This study grew out of a series of stimulating conversations with Dr C. G .  H. 
Rooth, now of the School of Marine and Atmospheric Sciences of the University 
of Miami, while both of us were working at  the Woods Hole Oceanographic 
Institution some years ago. My interest in it was revived during a visit to Miami 
on the way to spend a period of leave in the Cloud Physics group of C.S.I.R.O., 
Australia, and it was continued and extended during that time. I am grateful to 
Mr J. Warner for his support and encouragement, and to  Prof. B. R. Morton for 
many illuminating discussions on the subject of plumes and vortices. 
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